ICC 2022 - IEEE International Conference on Communications | 978-1-5386-8347-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICC45855.2022.9838562

Exploring ML methods for Dynamic Scaling of
beyond 5G Cloud-Native RANs

Akrit Mudvari, Nikos Makris, Leandros Tassiulas
Dept. of Electrical Engineering, Yale University,
New Haven, CT, USA
Email: akrit.mudvari@yale.edu, nikolaos.makris @yale.edu, leandros.tassiulas@yale.edu

Abstract—As the containerization of network services is ex-
panding towards the Radio Access Network (RAN), the operators
seek to benefit from the paradigm of cloud-native services
through a wide ecosystem of practices that are applicable to
such resources. Such practices include the dynamic scaling
of the services in response to the demand, with the network
service being assigned more/less resources, or replicated, for
accommodating the incoming demand. In such cloud-native
environments, proactive decisions can be accomplished through
Machine Learning models, which are efficiently trained for
specific metrics that reflect the network demand. In this work,
we use a real cloud-native telecommunications network and real
traffic patterns, and evaluate four different Machine Learning
methods for predicting the incoming demand. The decisions made
based on the predictions regard the scaling of the base station
(gNB/eNB) and the core network entities that deal with the
User-Plane traffic (UPF/SPGW-U). Our results show that higher
accuracy for such predictions can be accomplished using the tree-
based methods over the Neural Network-based solutions, when
each method is used for making accurate pro-active decisions for
scaling of the under-study network functions.

Index Terms—S5G network, cloud-native, auto-scaling, Machine
Learning, Kubernetes, OpenAirInterface

I. INTRODUCTION

5G networks integrate several technologies for easing the
deployment, rolling out of updates, and decision management
for network operators. Such functionality is enabled through
the adoption of softwarized entities across the entire stack,
initially for the Core Network (CN) but slowly expanding
towards the Radio Access Network (RAN). The adoption
of such software network functions, enabled through the
deployments of edge infrastructure, drives the instantiation of
the telecommunication network through cloud-native micro-
services. As a matter of fact, the 5G CN has been designed to
support all its functions as cloud-native, through the realization
of the Service Based Architecture (SBA) [1].

As network functions move to a cloud-native setup, several
cloud-driven tools can be used for adapting them according to
the demand at a given time period. Such dynamic adaptation
of the networking resources can prove to be very beneficial
for the overall network efficiency, while the network adapts
according to the user load that it receives. For example, in
the case of the 5G network, the User Plane Function (UPF)
that is in charge of transmitting user data to the respective
Data Network (DN) can dynamically scale out during high
traffic loads, offering better response and latency times for the

This work was supported by the National Science Foundation under Grant
CNS 2112562 and the Naval Research Laboratory under Grant N00173-21-
1-G006.

users connected to the network. Similarly, a 5G cell running

as a software function (e.g. a Cloud-RAN instantiation) can

dynamically use more resources as the transmitted network
traffic increases, and thus some intensive tasks like signal
encoding can become bottlenecks for the network operation.

A key factor to decide on such allocations in the network
is the prediction of the demand; Machine Learning (ML)
solutions come to the forefront to provide accurate predictions
based on recorded metrics. The selection of such metrics is
not apparent though and not the same for all the functions.
Different metrics at the base station level might not reflect
the exact conditions at the RAN, and usually need to be
combined together with others in order to truly reflect the
pressure under which the network is placed. Similarly, the
selection of the ML method to predict the different metrics is
not apparent. Although off-the-shelf solutions like Long Short
Term Memory (LSTM) Recurrent Neural Networks (RNNs)
can provide accurate predictions for some metrics, the metric
volatility can produce significant errors in the predictions.

In this work, we focus on a cloud-native cellular network,
with the CN and the RAN realized using micro-services with
the OpenAirlnterface [2] platform. By exploiting the Kuber-
netes framework, we use an experimentally driven approach
with the following contributions:

o To determine meaningful metrics, specific to the Telecom
network, that reveal the actual network utilization for the
RAN or the CN.

« To evaluate different Machine Learning algorithms on their
accuracy of prediction for the different under-study metrics.

o To jointly define a prediction approach for the different
components in the end-to-end network.

o To exploit the predictions for defining a proactive scaling
mechanism for the RAN and the CN functions, that meets
the network demand while achieving efficiency of resource
utilization.

Towards accomplishing the last goal, we use the Horizontal

and Vertical Pod Autoscalers (HPA/VPA) supported in the

Kubernetes framework. The VPA is used for determining the

scaling decisions for the base station, while we employ the

HPA for the CN case.

II. RELATED WORK

The application of Machine Learning (ML) for network
optimization and reconfiguration based on the predicted de-
mand has been identified as key for the progress beyond 5G
networks. Several works have emerged in this context, such

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:35:29 UTC from IEEE Xplore. Restrictions apply.

2284



as in [3], where the authors employ ML for the allocation of
resources in the cellular network, in a vehicular environment.
Industry efforts are also steering towards the adoption of a ML
driven RAN, through the specification of interfaces around the
Open-RAN ecosystem, and the definition of the Radio Intelli-
gent Controller (RIC) platform that allows for near-realtime
decisions for the RAN operation [4]. The identification of
the suitable ML model and approach depends on the values
that need to be predicted. In [3], authors use a Convolutional
Neural Network (CNN), a Deep Neural Network (DNN)
and a Long-Short Term Memory (LSTM) model, to predict
traffic and establish flows in an SDN controller managing the
network, and evaluate it in terms of training cost and prediction
accuracy. In [5], authors employ three learning models (super-
vised, unsupervised and reinforcement learning) for efficiently
allocating slices over cellular network infrastructure. In [6] the
fundamental concepts of supervised, unsupervised, and rein-
forcement learning are presented, and how ML can contribute
to supporting each target key performance indicator per each
slice in the 5G network is discussed. Authors in [7] present a
conceptual model for 6G networks and show the use and role
of ML techniques in each layer of the model. Supervised and
unsupervised learning, Reinforcement Learning (RL), Deep
Learning (DL) and Federated Learning (FL) are examined.
Similarly, authors in [8] propose employing ML for supporting
specific functions of applications for 5G networks, including
cognitive radios, massive MIMO and heterogeneous networks.

Although the previous works highlight the application on
ML for different tasks, they approach the problem from a
holistic view, instead of optimizing specific services, and
in many cases fail to address the decisions that should be
taken post the predictions. In [9], authors use state-of-the-art
ML methods to infer location, social behaviour, and traffic
demand through a cloud-edge computing framework. Using
this knowledge, they focus on exploiting and integrating the
demand predictions for proactive optimizations, including load
balancing, mobile edge caching, and interference management.
In [10], authors focus on a scaling algorithm based on Control
Theory for the Access and Mobility Function (AMF) of the
5G Core Network (5G-CN), optimizing the Control Plane
(CP) operation of the cellular network. They present a scaling
algorithm for the AMF function of 5G-CN, balancing traffic
among the replicas for achieving higher user admissions to the
network under high load. In [11] their solution is extended
with a ML approach using a LSTM model for predicting
peaks in traffic, and proactively scaling the AMF for absorbing
future incoming traffic. Both solutions are evaluated using the
4G equivalent of the AMF, the Mobility Management Entity
(MME). Authors in [12] evaluate three ML models (linear
regression, LSTM, RNN) for studying behaviour information
estimation (e.g., anomalies in the network traffic) and network
load prediction. For the prediction of network load, three
different models are used to minimize the mean absolute error,
which is calculated by subtracting the actual generated data
from the model prediction value.

In this work, we focus on the User Plane (UP) part of
the 5G network, with respect to the functions of UPF (User

Plane Function) and the actual cell for RAN access. Given
the observed traffic patterns, we evaluate the efficiency of
four different ML models for predicting the load under which
the network functions are placed. Based on this load, we
determine a proactive scaling mechanism for the functions,
allowing the network to operate smoothly even under high
demand. The scaling decisions for the CN are horizontal,
enabling the replication of the service to multiple replicas that
serve concurrently the attached UEs. Moving beyond existing
state-of-the-art, and based on the fact that the base station is
running in a virtualized environment, we propose scaling the
base station as well in a vertical manner, meaning that more
computational resources are added to the VNF, as under load
several bottlenecks in scheduling/decoding exist [13].

III. SYSTEM MODEL

In this section we present the system architecture and the
ML approaches that are further evaluated with respect to
the accuracy of predictions for different metrics, used for
determining the scaling decisions for the network.

A. System Setup

Our target system for optimizing the scaling decisions is
a Telecom network, provided through the OpenAirlnterface
(OAI) platform [2], and the respective micro-service imple-
mentation of the RAN and CN [14]. OAI is an all-software
based implementation of the 4G and 5G RAN and CN,
realizing the network over commodity equipment using a
Software Defined Radio (SDR) front-end. Since the 5G-CN
implementation is at the time of writing not mature yet, we
focus on the LTE implementation. The CN is realized using
the Control and User Plane Separation (CUPS) architecture,
allowing each function to run as a separate micro-service. The
OAI implementation of the CUPS architecture is providing the
Home Subscriber Service (HSS), the Mobility Management
Entity (MME), a Service/Packet GW for CP (SPGW-C), a
Service/Packet GW for UP (SPGW-U), and a Cassandra-based
database. We focus on scaling the RAN eNB function, and the
SPGW-U for UP operations. The scaling cases are equivalent
to the 5G implementation, without changing the monitored
metrics as follows: instead of the eNB we scale the gNB,
and instead of the SPGW-U we scale the UPF. Therefore,
the solution is directly plug-able to any 5G system, just by
changing the deployed functions.

Components of the network are containerized (as docker
microservices) and this includes the RAN function (eNB)
which only requires access to an SDR-based front-end (i.e.
network-based or USB-based). The network is instantiated
through Kubernetes (K8s), used for orchestrating and scaling
the OAI services in our system. We employ horizontal scal-
ing, realized by the Horizontal Pod Autoscaler (HPA) which
spawns replicas of the service and redirects traffic to the pool
of replicas, or vertical, realized by the Vertical Pod Autoscaler
(VPA) which assigns more/less resources to a container.

We deploy the Prometheus Operator [15] within our K8s
cluster, for the collection of metrics in real-time. Prometheus
is a monitoring stack registering with the custom metrics API

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:35:29 UTC from IEEE Xplore. Restrictions apply.

2285



Vertical Scaling for eNB

g

Multi-layer Metric XGBoost
Perceptron Prediction
117 "&
4\\\\ scaling RNN Random
Dexisions. __ Forrest

'\ K85
To/From DN \/PA/H PA

Fig. 1: System architecture for the under-study cloud native network: telemetry for the collected metrics is provided by Prometheus, and data is managed with
different ML implementations; decisions on the number of replicas (in green color) are applied through the Kubernetes HPA and VPA.

of K8s, enabling the K8s services such as the HPA/VPA to take
advantage of extended metrics from the deployed services. To
accurately measure the metrics pertaining to the scheduling
decisions and the load of the cell on the radio side, we deploy
and integrate in Prometheus the FlexRAN [16] platform.
FlexRAN provides real-time information and statistics from
the eNB/gNB, through a REST API. The API provides existing
configuration settings, and lower level statistics such as bytes
sent through the different layers of the stack, retransmissions,
etc.. Figure 1 our system-level cloud-native RAN architecture.

B. Machine Learning approaches

The input metrics to the scaling algorithm are discrete time-
series data scrapped by Prometheus over the past time steps,
and the output are the accurate predictions of the number of
connection instances in the present time. Towards making this
decision via a ML-based approach, there are some fundamental
questions that need to be tackled, including 'which ML method
is the best-suited to accomplish the learning task?’ and ‘what
is the importance of each of the input data point used to train
and implement the scaling task?’.

The relationship between the cellular network traffic, across
control and user plane, and the demand for new connections
served over the network should have certain basic features that
could be intuitively predicted. We can expect higher user ac-
tivity and hence higher demand to result in higher traffic in the
network in certain cases. Similarly, the fluctuating nature of the
network traffic could be indicative of changing demands. For
instance, if we observe a decreasing trend in data plane traffic,
it might be a result of user activity decreasing and a subsequent
reduction in demands in a near future. In other words, there
is a temporal aspect that a predictive mechanism can exploit.
Such a relationship between the indicative variables and the
required predictions, in a data-driven paradigm, would suggest
we also explore methods that have shown results in solving
problems using temporally related data. These intuitions and
survey or literature led us to choose four different methods for
analysis: Multi-layer perceptrons [17], LSTMs [18], Random
Forest [19], and XGBoost [20]. The choice of LSTM and
XGBoost were based on their recent success in various fields

in predicting similar data to the ones we are working with,
while the other methods are added to see if simpler approaches
could give us equally good or better predictions. In each of the
cases, the input is a vector of relevant network traffic volumes
collected over a certain time, while the output is the predicted
number of connections in the future. Specifics of the relevant
network traffic statistics we decided to use in each case are
discussed in Section IV, for each of the two cases (SPGW-U
and eNB) that we investigate. The ML algorithms are executed
to generate output (predicted number of connections) at each
time point, i.e. for the SPGW_U for each time step ¢ the
output is the predicted number of connections accessing the
SPGW_U at the time ¢, while the input is the volume of traffic
generated in the multiple past time steps (i.e, t—3,.....,t—12).
Therefore, the input is a vector ([x¢—12, Tt—11,.--..,Z¢—3]) of
a certain size (i.e. 10 in this example), containing the relevant
network traffic volumes z at a time t—n where n € {3,...,12}
(in the example above with 10 past time steps). During the
supervised training steps, the predicted number of connections
was measured against the actual connection number.

1) Neural Network-based Approaches: The recent advance-
ments in the field of Artificial Neural Networks (ANNS),
alongside the developments in the field of parallel computing,
have pushed ANN learning methods to the forefront. In our
work, we investigate two variants: the Multi-layer Perceptron
and LSTM.

Multi-layer Perceptron: One of the methods implemented in
our work is the multi-layered perceptron, a widely used variant
of ANNSs. Here, the different traffic metrics scrapped from the
network are collected and served as the input to this Deep
Neural Network (DNN) architecture and the neural networks
are trained to predict the future traffic demands.

LSTM: As discussed earlier, heuristically, the nature of the
traffic data being scraped from our system is recognized as
having a temporal correlation with the traffic data that are
being collected in the past and the present being indicative of
the future demands. Such a dataset is well-handled by RNN
[21], a NN implementation that captures the relation between
sequentially provided data towards making a data-driven pre-
diction. LSTMs have become a highly effective and scalable

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:35:29 UTC from IEEE Xplore. Restrictions apply.

2286



Error vs. Feature size (training data)
0.052

0.05

0.048

0.046

Error

0.044
0.042

0.04
0.038

0.036 . . . . . . . . .
0 2 4 6 8 10 12 14 16 18
Feature Size

(a) Error for training data

Error vs. Feature size (test data)
0.054

0.052 \

0.0 \\ //\ /\\

0.048 V \—/'\\

0.046 \W /F\

2 4 6 8 10 12 14 16 18
Feature Size

Error

0.044

0.042
0

(b) Error for testing data

Fig. 2: Error as a function of feature size for the XGBoost implementation

deep learning method for tackling various problems with data
that are sequential in nature. LSTMs have been developed as
an improvement on RNNs, with benefits including avoidance
of vanishing gradient and improved accuracy for various tasks
[22]. In our method, the input (time sequence of traffic), is the
input for the LSTM with the earliest data being the first input
and the other values provided sequentially.

2) Tree-based approaches: In this subsection we discuss

our methods that leverage decision trees for predicting the
connection demands: Random Forest and XGBoost.
Random Forest: Random Forest, an ensemble learning
method of aggregating decision trees, was used in [19] random
to address the problem of then-contemporary methods, where
uneven distribution of data led to poor performance [23]. Since
then, decision trees have become a popular machine learning
tool for numerous regression and classification problems faced
in a wide array of fields. In our work, the traffic volume at
different times is used as input for creating the trees, and the
predicted output is the number of connections.
XGBoost: XGBoost is a decision tree-based system introduced
in [20], which has been used in several applications to achieve
state-of-the-art results. In particular, it is a gradient boosting
mechanism wherein a prediction model is formed as an
ensemble of weak prediction models. As in gradient boosting
methods, XGBoost uses the gradient descent approach towards
loss minimization, and creates subsequent decision trees to im-
prove the model predictability. Some features the method uses
for enhancement include regularization for preferring a less
complex model and preventing over-fitting, and accounting for
sparsity in data by approximating the missing feature values.
In our case, the traffic volumes at discrete time steps are the
features used to predict the number of connections.

IV. EVALUATION

For the evaluation of the different ML approaches, we
use a real deployment in an indoor testbed located in the
Yale University premises. We use an extended version of the
OALI platform, able to run in a cloud-native manner, using
Kubernetes and docker, as detailed in [24]. We use a single
node setup, equipped with a USRP B210 SDR, where the
core K8s framework is configured and the cloud-native RAN
is instantiated. A second node is used with a LTE dongle
as UE, that attaches to the deployed RAN. On the node
that is attaching to the network, we use the open source

Telecom Italia dataset [25], which contains patterns of users
requesting service from the network, spanning an entire week.
The dataset was used to feed new connections requesting data
service from the UE side over the network. Each incoming
connection is allocated to one of three traffic classes defined
randomly, as low/medium/high. The traffic is reflected to the
data flow requested on the DL channel (CN to UE path). The
three classes equal to 70/25/5 % of the traffic connections for
low/medium/high traffic load categories respectively, as also
detailed in our prior work [24]. Each UE connection starts
a DL UDP stream from a container deployed alongside the
SPGW-U. The sum of the traffic going over the network is
configured to reach the maximum capacity of the eNB cell at
any time, equal to 35Mbps, based on the configuration used
(10 MHz bandwidth, FDD cell in band 7 using SISO).

The metrics used for predicting the demand were observed
based on the evolution of the different metrics monitored by
Prometheus, when traffic was generated over our network.
These were determined as follows:

« For the eNB, the UP bytes sent over the PDCP protocol.
o For the SPGW-U, the UP traffic transmitted over the S1-U
interface

Each of the different models were used to predict the metric
evolution. Based on the predictions, we use a threshold to
proactively determine when the network should be scaled for
accommodating the demand.

A. Feature Selection

In each of the deployed methods, it was predictable heuris-
tically that adding more features would be beneficial; though,
it might not be a good idea to use a large number of features
as it could lead to an increase in training and inference time,
as well as the computational cost. Here, we specifically talk
about the number of instances of past traffic volumes collected
while discussing the number of features. In our approach, we
begin by considering traffic data, for a demand prediction at
time ¢, from ¢ —3A¢ to t —23At, where A is the time intervals
at which the consecutive traffic (and connection) statistics are
collected in real time. Selecting the most useful subset of the
collected metrics would entail analyzing the Mean Absolute
Error (MAE) between the real value and the predicted value,
generated when different number of aforementioned features
are selected. For each of the different methods, the errors were

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:35:29 UTC from IEEE Xplore. Restrictions apply.

2287



Real Values
LSTM Predictions
Perceptron Predictions

eNB Metric Predictions
60 T T T

: PPN

. A

o ) N
—— N

0 100 200 300 400 500 600
Time (s)

Connections

(a) Data predictions for NN methods

Real Values
Random Forest Predictions
XGBoost Predictions

eNB Metric Predictions

70

o e ]
. = A )
. s !
. e Y
o 7"

N

0 . . .
0 100 200 300 400 500 600
Time (s)

Connections

(b) Data predictions for tree-based methods

Fig. 3: eNodeB data predictions (predicting the number of connections that request service over the network)

calculated for different numbers of features considered. For
the case of the XGBoost model, results are shown in Figures
2a and 2b, illustrating in 2a the error when different feature
lengths are used for training data and in 2b for test data. In
this example, selecting the right feature length could improve
the accuracy by 19.5% during the test case.

Multi-layer LSTM | XGBoost Random

Perceptron Forest
SPGW-U 4.9 4.8 32 3.6
eNodeB 7.9 6.5 3.4 3.9

TABLE I: MAE Calculation for the different ML methods

B. Hyperparameter selection:

In each of the cases, the training and testing data were
separated with 80% data used for training and 20% for testing.
Multi-layer Perceptron For SPGW-U, a deep perceptron
network with two hidden layers, with the first hidden layer
having a 2 times more nodes than the number of input features,
and second layer with 4 times the number of input features,
was chosen, with the output passing through a ReLu. An L1
regularization of 0.0002 was used, with a learning rate of
0.0012 and Adam as the optimizer. A batch size of 40 was
used while training. For eNodeB data, the difference was that
the learning rate was set to 0.0008.

LSTM In case of SPGW-U data, an LSTM with 2 layers
and 20 hidden layers was used. Here, we found the effective
learning rate to be 0.001, using the Adam optimizer, and L1
regularization to have a value of 0.0002; the training batch
size was 40. In case of the eNodeB, an LSTM with 2 layers
and 15 hidden layers was used, and other choices included
learning rate of 0.001, optimizer as Adam, L1 regularization
value of 0.00002, with the training batch size of 40.
Random Forest For the SPGW-U case, the number of trees
was 70, and the maximum allowed depth was 90. For the
eNodeB case, the number of trees was 60 and maximum
allowed depth was 60. For both cases, the minimum number
of samples required for split was 2, and the squared error
regression method was used.

XGBoost The following hyperparameters were chosen for
XGBoost. The regression method in all the cases was squared
error. In case of SPGW-U data, the number of trees allowed
was 100, and the maximum depth was left to be 100, the
learning rate was 0.1, the fractions of columns sampled for

each tree was 0.3, and this faction was 1 for each split, the L1
regularization value was set to 0.01. For the eNodeB data, the
number of trees allowed was 100, the maximum depth was left
to be 100, the learning rate was 0.1, the fractions of columns
sampled for each tree was 0.7, and this fraction was 1 for each
split, the L1 regularization value was set to 0.01.

Real Values Predicted Values

SPGW-U Metric Predictions

70

60 !

50 ;
|

"
Uy i ,
ST W R b

0 50 100 150 200 250 300
Time (s)

Connections

Fig. 4: SPGW-U Metric Predictions using XGBoost; green lines denote the
points of horizontal scaling-out and red lines vertical scaling-in.

C. Results

To measure the efficiency of the different methods, Mean
Absolute Error (MAE) was used, where the difference
between the actual number of connections and the predicted
number of connections were compared. The results for the
comparison are shown in Table 1.

Our observation was that in either of the two cases, SPGW-
U and eNodeB, the values were found to be generally closer
for the decision-tree based methods, XGBoost and Random
Forest, and similarly so for neural network-based implementa-
tions, LSTMs and multilayer perceptron. XGBoost performed
better than other implementations, with Random Forest having
high accuracy as well. To further interpret the MAE measure-
ments, it can be considered the difference between real and
predicted demands at a point in time, so a difference between
worst and best methods of 1.7 in case of SPGW-U results in
1224 more instances recognized more accurately. Similarly, a
difference of 4.5 in case of eNodeB results in 3240 instances
recognized more efficiently. Between XGBoost and Random
Forest, first and second-best performers, the values drop to
144 for SPGW-U and 360 for eNodeB data respectively. In
order to demonstrate the differences in predictions from the
different methods, Figure 3 illustrates the predictions that the
four methods can achieve, classified with the method that they

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:35:29 UTC from IEEE Xplore. Restrictions apply.

2288



Real Values

Predicted Values

eNodeB Metric Predictions
60

50 l

. ik -
30 JJ}“L_/ | w
ol f
N 7
N

0 50 100 150 200 250 300 350 400
Time (s)

Connections

Fig. 5: eNodeB Metric Predictions using XGBoost; green lines denote the
points of vertical scaling-up and red lines vertical scaling down.

implement (NN or tree-based). As it can be observed, the
NN methods for the specific data are less accurate than the
tree-based methods, of which the XGBoost performs better.
(Figures 3a and 3b are illustrations based on real connections,
but the overall evaluation uses the exact same set of data
for training and testing in case of each investigated method.)
A sample result showing difference in real and predicted
demands over time is illustrated in Figure 4 for SPGW-U and
in Figure 5 for eNodeB. Based on the configured thresholds
for the scaling mechanisms, the Figures also illustrate the
points when the scaling process shall happen, in order to
accommodate the incoming demand. The framework is able
to identify the number of connections that are transferred over
the network, based on replaying the connections with random
traffic generation, as detailed in the beginning of Section IV.

A faster inference time for the methods implies that the
method is suitable for making proactive decisions that lead
to a more efficient utilization of the resources. For instance,
the number of instances could be updated/scaled every minute
or so based on predictive decision making, leading to more
efficient utilization of the computational resources. Hence the
other factors to consider included the inference time, which
was around 5ms for the random forest, 1ms for XGBoost, 1ms
for LSTM and less than 1ms for the multilayer perceptron. The
implication here is that each method takes a short time for the
computations compared to the frequency with which the data
is collected. It was realized that there is no need to see either
of the methods as being particularly beneficial above others.

V. CONCLUSION

In this work, we focused on the evaluation of different ML
methods for predicting the demand in the cellular network,
and appropriately making scaling decisions for the network
functions. We used a real cloud-native RAN deployment,
monitored its operation, and executed each part of the network
using micro-services. The results showed clearly that tree-
based methods can predict with higher accuracy the data
streams for the under-study network, compared to traditional
NN approaches. The predictions can be used in order to proac-
tively decide on the scale of each network function, and hence
operate a more efficient network, while providing seamless
service to end-users under high loads. In the future, we foresee
to extend our scheme towards proactively allocating resources
under different slices, based on the hosted applications.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5G evolution: A
view on 5G cellular technology beyond 3GPP release 15,” IEEE Access,
vol. 7, pp. 127 639-127 651, 2019.

N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,”
ACM SIGCOMM Computer Communication Review, vol. 44, 2014.

S. Khan Tayyaba, H. A. Khattak, A. Almogren, M. A. Shah, I. Ud
Din, 1. Alkhalifa, and M. Guizani, “5G Vehicular Network Resource
Management for Improving Radio Access Through Machine Learning,”
IEEE Access, vol. 8, pp. 6792-6800, 2020.

H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, “Hosting AI/ML Work-
flows on O-RAN RIC Platform,” in 2020 IEEE Globecom Workshops.
IEEE, 2020, pp. 1-6.

V. P. Kafle, Y. Fukushima, P. Martinez-Julia, and T. Miyazawa, “Con-
sideration on automation of 5G network slicing with machine learning,”
in 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K).
IEEE, 2018, pp. 1-8.

S. Natarajan and S. Mohan, “A Supervised Learning Approach for
Reducing Latency during Context Switchover in 5G MEC,” in 2021
IEEE 18th CCNC, 2021, pp. 1-2.

J. Kaur, M. A. Khan, M. Iftikhar, M. Imran, and Q. Emad Ul Hagq,
“Machine Learning Techniques for 5G and Beyond,” IEEE Access,
vol. 9, pp. 23472-23 488, 2021.

C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo,
“Machine Learning Paradigms for Next-Generation Wireless Networks,”
IEEE Wireless Communications, vol. 24, no. 2, pp. 98-105, 2017.

B. Ma, W. Guo, and J. Zhang, “A Survey of Online Data-Driven
Proactive 5G Network Optimisation Using Machine Learning,” [EEE
Access, vol. 8, pp. 35606-35 637, 2020.

I. Alawe, Y. Hadjadj-Aoul, A. Ksentini, P. Bertin, and D. Darche, “On
the scalability of 5G core network: The AMF case,” in 2018 15th I[EEE
CCNC, 2018, pp. 1-6.

1. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin, “Improving Traffic
Forecasting for 5G Core Network Scalability: A Machine Learning
Approach,” IEEE Network, vol. 32, no. 6, pp. 4249, 2018.

S. Sevgican, M. Turan, K. Gokarslan, H. B. Yilmaz, and T. Tugcu,
“Intelligent network data analytics function in 5G cellular networks
using machine learning,” Journal of Communications and Networks,
vol. 22, no. 3, pp. 269-280, 2020.

N. Budhdev, M. C. Chan, and T. Mitra, ‘“Poster: IsoRAN: Isolation and
Scaling for 5G RAN via User-Level Data Plane Virtualization,” in 2020
IFIP Networking Conference. 1EEE, 2020, pp. 634-636.
“OpenAirK8s,” https://github.com/OPENAIRINTERFACE/openair-k8s.
J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.

X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRAN: A flexible and programmable platform for software-
defined radio access networks,” in Proceedings of the 12th CoNEXT,
2016, pp. 427-441.

S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, classifiaction,”
1992.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber, “LSTM: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222-2232, 2016.
L. Breiman, “Random forests,” in Machine Learning, 2001, p. 45(1).
T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785-794.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Tech. rep. ICS 8504. San Diego,
California: Institute for Cognitive Science, University of California,
Sept, 1985.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and
B. P. Feuston, “Random Forest: A Classification and Regression Tool for
Compound Classification and QSAR Modeling,” Journal of Chemical
Information and Computer Sciences, vol. 43, no. 6, 2003.

A. Mudvari, N. Makris, and L. Tassiulas, “ML-driven scaling of 5G
Cloud-Native RANSs,” in 2021 IEEE Global Communications Confer-
ence (GLOBECOM), 2021, pp. 1-6.

G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of Milan and the Province of Trentino,”
Scientific data, vol. 2, no. 1, pp. 1-15, 2015.

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:35:29 UTC from IEEE Xplore. Restrictions apply.

2289



