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Abstract—In this article, we introduce a fog system design for
processing data collected from edge devices, such as mobile, sen-
sor, and extended (mixed, augmented, virtual) reality equipment.
Our system enables the network to provide hardware-accelerated
processors for resource-intensive computations on data gathered
from remote locations, such as 5G and beyond mobile networks.
By splitting heavy computations into pipelines, and distributing
them among processors in the edge, fog and the cloud, our design
benefits from the processing power of the cloud, while utilizing
fog devices with a lower network latency.

We implement our design, and use it for distributed training
and inference with industry-grade deep learning models for
computer vision. We deploy our architecture in infrastructure
including cloud and edge servers supporting GPU-accelerated
computations. We benchmark pipelines in various deployment
settings to study the overhead that they introduce. Our con-
tributions are a new design for wide-area data processing, a
framework that realizes this design and provides means of
developing applications that are optimized in terms of infras-
tructure and hardware. These contributions are complemented
with our benchmark results, which reveal the potential causes of
processing overhead.

Index Terms—fog computing, stream processing systems, deep
learning

I. INTRODUCTION

Mobile devices constitute the largest share of devices con-
nected to the Internet, and according to CISCO forecast, their
share will keep steadily increasing. Modern Internet-based
applications, such as multimedia streaming and environmental
sensing, produce massive amounts of data, and according to
the current trends, they are expected to constitute the majority
of the network traffic in the future [1].

6G networks are envisioned to improve the broadband
connectivity in wireless networks drastically [2]. The peak data
rate is expected to increase from 20 Gbps in 5G networks,
to 1 Tbps in 6G, and the end-to-end latency is expected to
reduce from 1 ms closer to .1 ms. These, among other quality
improvements, enable new emerging applications, such as
holographic teleportation, autonomous cyber-physical systems,
intelligent industrial automation, as well as smart infrastructure
and environments [3]. While 6G networks will be able to col-
lect more data for the purposes of the applications, in doing so,
they also increase the traffic in the backbone network, in case
all of the data are transmitted to centralized data centers, such
as cloud platforms. However, as most of the computational
resources are currently centralized, collecting the data is the
primary alternative for computationally demanding tasks, such
as data analytics and machine learning.

Edge computing provides an alternative for centralized data
collection, by utilizing compute hardware located at the edge
of the network [4]. By avoiding the need for communication,

edge devices can run computations with a lower latency, and
have the potential to improve users’ privacy. However, the edge
is limited by the resource-constraints of mobile devices; certain
computations may be practically infeasible to execute in the
edge altogether. When developing applications that utilize the
edge, one needs to consider the details of the device, such as
the processor architecture as well as the available memory and
disk space. [5]

Fog computing is another alternative to cloud and edge
computing. It complements the two, by scattering compute
resources within the network. Edge devices can utilize the fog
architecture, by offloading computations to the fog hardware
instead of directly to the cloud. Compared to cloud computing,
fog computing provides a lower expected network latency for
offloading. Fog computing has also advantages over edge com-
puting, since the fog devices need not be mobile; static devices
have less physical space constraints than mobile devices, and
can include more compute power. Furthermore, static devices
do not need to rely on batteries for power and offloading
appropriate computations from mobile devices can save their
batteries.

When it comes to real-world deployment scenarios, the
primary considerations in fog computing are resource place-
ment and allocation. Firstly, in order for the fog devices to
provide lower network latency than cloud, they need to be
geographically closer to the users. For instance, in mobile edge
computing (MEC), this is guaranteed by deploying compute
hardware to the mobile base stations, which the users connect
to in order to get access to the Internet [6]. Secondly, due to
the highly distributed nature of fog computing, the deployed
hardware must be sized according to the demand; under-
provisioning hardware negatively affects the quality of service,
while over-provisioning makes fog computing economically
infeasible.

In this paper, we investigate fog computing for geo-
distributed data processing, by using software virtualisation
in combination with hardware-acceleration. We present a
lightweight system design for integrating edge, fog and cloud
devices seamlessly via pipelined execution, and the associ-
ated programming framework, that enables the application-
developer to create processing pipelines by defining each sub-
task as a function. We use our framework to implement two
deep learning applications for computer vision, and prototype
our system design with devices, that provide GPU-accelerated
processing for deep learning. We conduct benchmarks to com-
pare the performance of the pipelines in various deployment
scenarios. The source code for both our system and our
example applications is open-sourced.
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Fig. 1: An overview of data processing in the cloud continuum where next-generation applications like XR and IoT may utilize
5G and other communication methods

Combined our work provides answers to the following
questions:

1) In what conditions can the fog support data processing
in the edge-cloud continuum?

2) What are the main causes and symptoms of processing
overhead in the fog?

3) How does communication overhead involved in fog
processing compare to that in cloud processing?

The paper is organized as follows. In Section II we discuss
the background and motivation for our work. In section III,
we present the design, implementation and the deployment of
our architecture, as well as the two deep learning pipelines
using our framework: model training for image classification,
and inference for object detection. In section IV we show the
results from our system evaluation, where we measured the
runtime performance of the two deep learning pipelines. In
section V we provide additional discussion about our results.
Finally, we give our final conclusion in section VI.

II. MOTIVATION & RELATED WORK

An overview of the set of future use cases in networked
applications is illustrated in Figure 1. Here, different end
devices, be it environment-sensing IoT, AR/VR headsets, or
cell phones, will be utilizing the 5G infrastructure to access
the computing resources in the edge-cloud continuum.

A. Cloud, Edge and Fog Computing

Cloud computing and big data have paved the way of dis-
tributed data processing. Since the primary bottleneck for data
processing tasks results from the data transfer speeds, which
tend to be orders of magnitude slower than the processing
speed of the chips, in cloud computing large computational
tasks are parallelised by partitioning the data among the
available servers. This approach can even the gap between
the slow data access speed and the fast data processing speed
of contemporary computer systems.

The existing data processing cluster solutions are primarily
designed for data center environments, and there are no
widely adapted data processing clusters designed for fog
infrastructure. Cloud-based clusters generally take advantage
of distributed file systems, such as HDFS [7], which rely on
high-bandwidth and low-latency networks, and may exploit
a data center network topology designed according to the
needs of a specific data infrastructure [8]. Due to these
factors, using the Internet as the network for cloud-based data
processing clusters is not possible, or it significantly affects
their performance, and new cluster designs aim to optimize
the distributed execution of data processing tasks over wide-
area networks [9].

The next generation cellular communication, in the form of
5G [10] and beyond, has become an important enabler for the
edge and the fog. While fog computing previously lacked the
infrastructure for deployments, now with the proliferation of
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(b) Two two-node pipelines using the same worker node.

Fig. 2: Sparse architecture for pipelines. The offloaded tasks’ input parameters are T
(i)
j and the result values are ∇T (i)

j .

5G infrastructure and drafting of the MEC standards [11], the
monopoly of the cloud is giving way to the edge and the fog.
However, in this new 5G edge-cloud continuum, the number
of alternatives for deployment settings is higher, and the right
selection of infrastructure may not always be obvious.

As individual processor are limited by physical constraints,
and Moore’s Law has gradually ceased to improve the per-chip
compute performance, new ways to improve the performance
of data processing tasks are needed [12]. While using hardware
dedicated for specific computations used to be the norm before
the popularity of general purpose CPUs, this direction has
gained a lot of recent interest, and today most of the cloud
service providers are either manufacturing their own chips, or
using customized chips. By using specialized processors, more
computational performance can be gained per watt, however
the gain depends on the task at hand. As with the selection
of infrastructure, the proper choice of specialized processors
is application-specific.

B. Distributed Machine Learning

As the size of the models used for state-of-the-art machine
learning has increased, their computational requirements have
increased as well, resulting in a need to distribute their compu-
tations. For neural networks with billions of parameters, model
training in a feasible time requires cloud-scale infrastructure
[13]. Model training within a data center is usually distributed
by partitioning the training data and/or model parameters, and
parallelising access to them. However, centralized processing
requires uploading the training data, which may be subject
to privacy regulations, to the cloud. Federated learning [14]
avoids this problem, by instead bringing the model to the
mobile devices for training. While avoiding the need to col-
lect raw user data, federated training generally convergences
slower due to having to aggregate model updates by averaging
gradients computed from non-IID data. The model size in fed-
erated learning is also constrained by the mobile device, which
must be able to compute the model update locally. To combine
edge processing and cloud offloading, authors in [15] suggest
splitting neural network vertically, and offloading part of the
processing to the cloud. New machine learning methods are
constantly being explored, and even entire data systems have
been designed particularly for distributed machine learning

[16], [17], so the current landscape of machine learning has
become highly distributed.

Our work builds upon the existing solutions for cloud-
based data processing, and edge computing with hardware-
acceleration, while considering the emerging landscape of 5G
and beyond mobile networks, as well as distributed deep
learning. In addition to outlining a practical system design,
we set out to develop a ubiquitous programming interface that
can help data scientists to find the optimal configuration for
data processing applications, both in terms of the infrastructure
and the hardware.

III. SPARSE: TASK EXECUTION PIPELINES

Unlike in cloud computing, where all of the resources are
located in a few global regions, the placement and allocation
of compute resources is a major challenge in fog computing,
where the end users’ locations continuously change. In fog
paradigm, compute resources are deployed sparsely in the
network to provide maximal coverage area. As a trade-off,
the fog devices cannot have processing power comparable to
cloud environments.

As a solution to improve the resource-constrained fog hard-
ware utilization, we study networked processing pipelines,
that, in line with OpenFog Reference Architecture [18], origi-
nate from the data source and progress among the fog devices,
until either the task is completed, or the pipeline reaches the
cloud. In practice, the end user offloads processing to the
closest fog device, which runs part of the computation, and
offloads the rest to another nearby fog device. This makes it
possible for the fog devices to distribute computations among
each other, enabling devices that are not being directly con-
sumed by end users to be utilized by other nearby locations.
By utilizing pipelines, the fog environment becomes more
robust to continuously changing demands, and avoids the need
to physically relocate hardware. As a trade-off, having to
partition computer program over the wide area network adds
overhead. In this work, we study the details of task pipeline
execution, identify and explain some causes of overhead, and
how they can be avoided. We introduce a novel programming
framework to realize fog computing. We call our framework
Sparse: Stream Processing Architecture for Resource-Subtle
Environments.
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Fig. 3: Communication flow during model training pipeline.
The execution of the offloaded task is awaited without block-
ing the execution of other tasks.

A. Pipeline Design

The general design of a basic three-node pipeline in Sparse
is depicted in Figure 2a. A Sparse cluster is formed by nodes
located either in the cloud, the fog or in the edge. The nodes
can create new processing tasks, or execute tasks created by
other nodes. To execute tasks, a node assumes the role of
a worker. To offload tasks, a node assumes the role of a
master and connects to a nearby worker node. In pipelines
with three or more nodes, the intermediate nodes are acting
as both masters and workers simultaneously. A worker node
can serve any number of masters, as is depicted in Figure 2b.

In order to submit new tasks, a master node includes a task
deployer component. When submitting a new task, the task
deployer opens a network connection to one or more workers,
and starts sending the task’s input data. The worker node
includes an RX pipe which accepts the connection and receives
the input data. Once all the needed data are transmitted,
RX pipe transfers them to the task executor, which runs the
computation. In practice a task executor may be a hardware-
accelerator. The RX pipe then responds to the master node
with the result of the computation.

Since nodes can cache some of the data used in consecutive
computations, such as machine learning model parameters,
pipelines can reduce the need for communication. This is par-
ticularly useful in iterative algorithms, like machine learning
model training.

B. Implementation

We implement our framework with Python, and deploy it
in containers using Docker. The source code for the imple-
mentation is available in GitHub1. The implementation uses
an asynchronous programming pattern for concurrency. The
implementation includes a module for deep learning, using
PyTorch, which supports general purpose CPUs, as well as
hardware-accelerators like GPUs and TPUs.

The prototype currently implements RPC for communica-
tion. The communication flow during model training pipeline

1https://github.com/AnteronGitHub/sparse
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Fig. 4: Extended split learning data flow

(explained later in more detail) is displayed in Figure 3.
A new connection is established for each task, and it is
kept open during the entire offloaded processing. The nodes
serialize messages using Python’s Pickle library, which, unlike
in text-based serialization schemes like JSON, instead converts
Python objects directly into byte streams, providing lower
transformation overhead for large payloads.

The when serving offloading requests, a worker node uses
first-come-first-serve policy for task execution. The task execu-
tor is implemented as an abstract Python class, and it provides
access to the node functionality, such as the task deployer
in case the nodes is also offloading tasks. When using the
framework, an application developer only needs to implement
the task executor. In our deep learning pipelines, we implement
executors for training a model, and for using a trained model
for inference. These two executors are included in the Sparse
library, and should work out-of-the-box for basic deep learning
training and inference.

While the Sparse framework is mainly designed for creating
pipelines, there is no application level primitives included for
pipelines, but instead pipelines are created by connecting the
nodes with the partitioned data. For dynamic configuration
of pipelines, the framework can be interfaced with external
orchestration tools, like Kubernetes or Docker Swarm.

C. Deep Learning Pipelines

We use our framework to implement two deep learning
pipelines: one for training, and another for inference. The
training pipeline takes the split learning [15] approach to
partition the used model based on neural layers, so that the
training can be performed collaboratively by nodes, which
do not have enough resources to operate on the full model.
The inference pipeline splits the model similarly, but does not
include backward propagation.

Figure 4 illustrates an example of a three node train-
ing pipeline, where a neural network, consisting of layers
L1, . . . LN is trained by three nodes, by using a feature vector
x ∈ X and a label y ∈ Y . The model is trained with standard
forward/backward propagation approach. First a prediction is
computed for x, using the model’s current parameters, in a
sequential fashion. Since the model is split, the computation
for the Intermediate node would happen in the following
fashion:

67

Authorized licensed use limited to: Yale University. Downloaded on February 19,2024 at 17:47:45 UTC from IEEE Xplore.  Restrictions apply. 



(a) Training VGG (b) Inference YOLOv3

Fig. 5: Task completion time measured in the data source. The curve step height corresponds to the used batch size (1 without
batching).

lj = (Lj ◦ Lj−1 ◦ · · · ◦ Li+1)(li) (1)

, including j − i layers of neural network. The input for
the Master node would be the feature vector x, and the output
of the Worker node is the final prediction ŷ. This forward
propagation is illustrated on the left side of Equation 1.

Following the approach in supervised learning, the correct
label y ∈ Y for the prediction is assumed to be known.
In practice this can be achieved by manual labeling, or
by extending the system for Reinforcement Learning (RL)
[19]. The correct label is used along with a cost function
G : Y ×Y → R, to find adjustments for the model parameters
that best minimise the cost function, fixed for x. The most
common technique is to use the chain derivation rule for
the function described in Figure 4. Since Lk is usually not
differentiable, the intermediate results, gained during forward
propagation, are used to compute the derivative numerically.
Following similar notations to what is used in [15], we will
denote the computations involved in backward propagation
simply LT

k . During the computation across layers, ∇lk is
computed for each layer k = 1 . . . N , and they constitute the
final model update. The back propagation for the Intermediate
node takes the gradient of the split layer it sent during the
forward propagation as an input, calculated as:

∇li = (LT
i+1 ◦ LT

i+2 ◦ · · · ◦ LT
j )(∇lj) (2)

For the Worker node, the calculation of the gradient includes
discerning the loss function between the prediction ŷ and the
true label y. This calculation is denoted as:

∇lj = (LT
j+1 ◦ LT

j+2 ◦ · · · ◦ LT
N )(G(y, ŷ)) (3)

In our framework, we define each model partition as a
separate function to create the pipeline. Forward and back-
ward propagations computations use hardware-accelerated task
executors, that cache model parameters in memory during the
entire training. We also batch training data to boost the training
on GPUs.

IV. PIPELINE BENCHMARKS

To study the processing overhead introduced by our
pipelines, we benchmark the execution of the same task in
different pipeline configurations. As an example case, we use

our deep learning pipelines for computer vision, a widely pop-
ular task in machine learning. In particular, computer vision
models often involve billions of parameters [13], making it
challenging to deploy them in resource-constrained devices.
We measure the task completion time and the network usage
in the data source, as well as the energy consumption and the
hardware utilization in the fog device.

A. Methodology

Our testbed consists of a cloud server, and an SoC as
a cloudlet. As a data source we use a laptop, that runs
PyTorch data loader. Both the cloud server and the cloudlet
support CUDA for GPU-accelerated processing. The hardware
specifications of the devices are shown in Table I. The es-
timated peak performances are based on the manufacturer’s
specifications. The ping latency was measured before running
the benchmarks.

We evaluate the system with industry grade deep learning
models for computer vision. For training, we use Visual
Geometry Group (VGG) model architecture [20] for image
classification, and the CIFAR-10 [21] dataset. For inference,
we use the YOLOv3 [22] object detection model, and the
COCO dataset.

We ran various benchmarks suites, each utilizing a different
combination of cloud, edge and fog resources. Two of the
suites split the task, while two process everything in the same
node. Throughout this section, we will use the following
names for different benchmark suites used in the system
evaluation:

• Cloud: A two-node pipeline including data source and a
cloud server. The data source offloads entire processing
to the cloud server, without splitting the task.

• Cloudlet: Similar to the cloud suite, except the processing
is offloaded to the cloudlet instead.

TABLE I: Hardware specifications of the devices used in the
testbed.

Device Peak Perf. (INT8) Ping latency

Cloud 130 TOPS ≈ 9 ms
Cloudlet 22 TOPS ≈ 1 ms
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(a) Training VGG in the Hybrid On-Device suite. (b) Inferring with YOLOv3 in the Hybrid On-Device suite.

(c) Training VGG in the Cloudlet suite. (d) Training VGG in the Cloud suite.

Fig. 6: Network usage measured in the data source.

• Hybrid Off-Device A three-node pipeline, where the data
source offloads the processing to the cloudlet and the
cloud server, which split the task.

• Hybrid On-Device A two-node pipeline, where the data
source also processes the first split, and offloads the rest
to a cloudlet.

During benchmarks, we measure the task completion time
in the data source, representing the task throughput, as well as
hardware statistics in the cloudlet. Benchmarks are measured
by an additional daemon process running at each cluster node.
After a task has been processed, the monitored node sends
a JSON message to the monitor daemon via a Unix socket,
without waiting for the reply. For more details, see Appendix
A for the pseudocode of the benchmarks. The source code for
the monitoring is also included in Sparse source repository.

B. Results

Figure 5 shows the CDF of processed samples in training
and inference. Appendix B shows, how the batch size affects
the training time in each, and essentially it shows the batch
sizes that provided the fastest training for each benchmark.
Even though nodes load the model parameters into memory
before the benchmarks are started, Figure 5 reveals that there
is also a slow start involved in our pipelines; in all cases the
first batch is the slowest to compute. While the slow start
does not affect our main results, we note that it may be an
important consideration in practice, and advocates executing
pipelines for longer periods of time.

For training, by using a three node pipeline between the
cloud and the edge, we were able to increase the batch size
for the pipeline, enabling the hybrid off-device suite to achieve
the fastest overall training time, slightly beating the cloudlet
suite. Even though out of all the suites hybrid off-device
uses the most hardware, and as a result more power, this

result demonstrates that the fog infrastructure can complement
cloud-based data processing to improve task throughput.

In contrast to training however, for inference without batch-
ing, the off-device hybrid deployment achieved the worst
overall throughput. Since batching was the only method that
we used to fine-tune the workloads, our results for inference
mainly display the effectiveness of split neural network traver-
sal. Even though inference in the cloudlet without splitting the
model provided the highest throughput, combination of on-
device processing and edge offloading was faster than cloud
offloading.

The communication overhead of neural network splitting
in the pipelines is displayed for training in Figure 6a and
for inference in Figure 6b. The added communication results
mainly from the fact that intermediate layers in feed forward
networks tend to be of higher dimension than the feature vec-
tors. In our experiments, the network load of communicating
the intermediate layer outputs is roughly four times higher
than communicating the raw data.

Figures 6c and 6d show the effect of batch size for commu-
nication overhead during training without task splitting in the
cloudlet and the cloud. For the resource-constrained cloudlet,
using too big or too small batch size reduces the average trans-
mission rate significantly. Essentially, there is a period during
each batch, when no data is being communicated, suggesting
that the pipelines become compute-bound. In contrast, when
using an appropriate batch size, the transmission rate stays
more constant.

Figure 6d highlights, how the overall communication over-
head reduces as batch size increases. As the cloud GPU
supports a larger batch size for training the same model as the
cloudlet, it avoids a lot of additional communication during
training, such as gradients which are computed per batch. For
a massive batch size of 2048, the overall network traffic drops
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(a) 64 batch size (too small) (b) 512 batch size (too big)

(c) 128 batch size (optimal)

Fig. 7: GPU and power usage in the fog device during the Cloudlet training suite.

by almost half in comparison to a more conservative batch
size of 256. While this would be ideal in terms of overall data
traffic, it has the biggest potential to congest the backbone
network, and the fact that with a batch size smaller than 2048,
cloud node shows signs of becoming compute-bound makes
cloud offloading seem challenging to optimize without having
to transmit massive amounts of data. Nevertheless, our results
demonstrate how proper batching has the potential to reduce
communication overhead during neural network training.

Figure 7 displays the GPU usage and the power usage
measured in the fog device during the training with different
batch sizes. The measured GPU usage is at maximum for
most of the training, even when using a suboptimal batch
size. However, different batch sizes make a clear difference
in the device power usage. The base power consumption is
approximately 10 W, which is the system power use when the
GPU is not being used. When training with too small batches,
the overall power usage increases only slightly, indicating that
the GPU is not being fully utilized. Similar patterns can be
seen when using too big batches, with the exception that there
are small peaks in power usage; these peaks likely result from
the details of the VGG model architecture. In comparison to
training with a too small batch size, when using the optimal
batch size, the power usage increases to almost twice as high,
but the training lasts for less than a quarter.

Similar measurements for inference are displayed in Figure
8. Similarly to training, the optimal workload in inference
has the highest power consumption during processing, while
the overall processing time is smaller. Overall, for inference
without batching, all of the benchmark suites show signs of
hardware underutilization, and none of the benchmarks reach

acceptable end-to-end latency, although these result also from
the used model and the dataset, which are not adjusted for an
XR use scenario.

V. DISCUSSION

Our benchmark results demonstrate the difference, that the
selection of infrastructure and hardware make for data process-
ing in the edge-cloud continuum. They highlight the impact of
proper hardware utilization to the throughput of deep learning
tasks. In practice, the applications determine the available
optimization methods, and we noticed how the infrastructure
that performed the best for batch training provided the worst
performance for inference without batching.

Some of the results in our study are explained by the fact
that we used mainly GPUs, which are designed for computa-
tions that can be parallelized, by including a high number of
cores: as a result of this design choice, the processing speed of
individual GPU cores is generally lower than cores in a CPU.
Without batching, some other means of parallelizing individual
inference tasks are needed to fully utilize GPUs, which can
be seen in our benchmark results.

Task splitting proved to be a viable option to scale opera-
tions on feed forward networks, particularly for the purposes
of model training. The freed compute capacity can this way be
used to increase throughput of tasks, at least when tasks can be
batched. Even without batching, by starting the processing in
the data source, our hybrid on-device pipeline reached nearly
as fast processing as edge offloading, and even outperformed
cloud offloading.

We notice in Figure 6c, how suboptimal configuration
results in a step-like curve in network traffic CDF. Essentially,
there are periods during which no data is being transmitted,
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(a) Cloudlet (fastest) (b) Hybrid Off-Device (slowest)

Fig. 8: GPU and power usage in the fog device during inference suites.

and instead the device is processing previous task. Combined
with the GPU and power measurements, the network usage
reveals that when using too small or too big a batch size, the
task becomes compute-bound, whereas with an optimal batch
size, the task is primarily communication-bound.

By implementing pipelines, we have provided benchmark
results for two real-world use cases utilizing deep learning
for computer vision. Our results show the difference in the
hardware utilization, when using different infrastructure for
processing, leading to a significant difference in the comple-
tion time of computations.

VI. CONCLUSION

With many variables affecting the performance of pipelines,
it is difficult to draw conclusions about which combination
of infrastructure and hardware would be universally the best.
While this study shows some cases where the fog is or is not
useful for enhancing cloud-based data processing, we found
our framework to be useful for prototyping such applications,
and helpful in finding these optimal configurations. As such,
we will keep using and developing the framework, and hope
that it will be helpful for other researchers working in this
domain as well.

To answer our first research question, the benchmark results
demonstrate, that if the fog hardware can be fully utilized, it
will improve the throughput of heavy workloads. To reach high
hardware utilization, the workloads need to be appropriately
sized. For neural network training, the workload size can be
fine-tuned, for instance with the choice of the batch size, as we
demonstrated. In practice this is achievable in fog computing,
where the processing hardware is shared by multiple users,
making aggregating input data is easier than in on-device edge
computing.

Pipelines introduce overhead to processing, if the aforemen-
tioned condition cannot be met, in which case the intermediate
processors create bottlenecks in the pipeline. The bottlenecks
can turn ideally communication-bound processing pipelines
compute-bound. While the most crucial symptom of the bot-
tlenecks is a drop in task throughput, other symptoms include
uneven communication flow, and oscillating or lower processor
power consumption during the pipeline execution.

Interestingly, even though the split processing pipelines that
we studied included more communication than their unsplit
counterparts, in some instances, including the optimal config-
urations, the resulting overhead was mitigated by the benefits
gained in task throughput. Due to these results, we conclude
that a smaller overall communication does not guarantee that
a task is processed faster, but note that it may be desirable for
other reasons, such as avoiding network congestion.

Based on our current results, it seems that longer pipelines
are best utilized for background tasks, that are expensive to
compute, but do not have strict latency requirements, such
as model training. Unlike training however, inference tasks
have strict latency requirements, making batching an infeasible
solution in many situations, since it results in additional
expected waiting time for most of the individual requests.
On the other hand, there may not be a need to rely on
offloading for inference in the first place; as an example, model
compression seeks to reduce the size and the computational
cost of deep learning models [23]. However, this approach
sacrifices models’ representation capabilities, and as a result
their accuracy.

Overall, we haven’t seen similar studies elsewhere, since
most of the pipeline studies we know (e.g. [24]) focus on
input pipelines and not end-to-end processing. As we expect
the future networked applications to keep becoming more data-
driven, our results show great promise for using fog computing
to enhance or even replace cloud-based data processing.
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APPENDIX A
BENCHMARK PSEUDOCODE

Algorithm 1 Data source training completion benchmark

1: procedure BENCHMARK TRAINING(epochs)
2: monitor client.start benchmark()
3: for i← 1 to epochs do
4: for X, y in batch do
5: grad, loss ← await offload training(X, y)
6: monitor client.batch processed(batch size(X))
7: end for
8: end for
9: end procedure

Algorithm 2 Data source inference benchmark

1: procedure BENCHMARK INFERENCE
2: monitor client.start benchmark()
3: for x ∈ samples do
4: await offload inference(x)
5: monitor client.batch processed(1)
6: end for
7: end procedure

Algorithm 3 Worker task completion benchmark

1: procedure RECEIVE TASK(input reader)
2: if ¬ benchmark started then
3: monitor client.start benchmark()
4: end if
5: input data ← await input reader.read()
6: await process task(input data)
7: monitor client.task processed()
8: end procedure

APPENDIX B
BATCH OPTIMIZATION FOR TRAINING

(a) Cloudlet (b) Hybrid On-Device

(c) Hybrid Off-Device
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