
ML-driven scaling of 5G Cloud-Native RANs
Akrit Mudvari, Nikos Makris, Leandros Tassiulas

Dept. of Electrical Engineering, Yale University,
New Haven, CT, USA

Email: akrit.mudvari@yale.edu, nikolaos.makris@yale.edu, leandros.tassiulas@yale.edu

Abstract—The evolution of the different network functions to a
cloud-native configuration creates fertile ground for the efficient
management and reconfiguration of the network. Through the
wide application of softwarization and virtualization, cloud-native
approaches can extend even to the RAN, that has been dominated
by monolithic non-configurable hardware equipment in the past
generations of mobile network access. As such, a cloud-native
deployment can cover the end-to-end 5G network architecture,
from the Core Network to the base stations, with the respective
services benefiting from several advanced features, such as
automatic scaling of the deployed functions based on monitored
metrics. Through the application of Machine Learning, the
evolution of the metrics can be predicted and thus the respective
functions can be pro-actively scaled. In this work, we use an end-
to-end real-world cloud-native deployment of a 5G network, and
deal with two different types of scaling, applied at three different
parts of the network: vertical scaling for the base station, and
horizontal scaling for control and user plane functions of the
core network. We use a real-world dataset for replicating traffic
over our setup and closely monitor the evolution of metrics from
different parts of the network. By applying Machine Learning
methods, we accurately predict the future network load and use
it to decide on the pro-active allocation of resources for the RAN
and the Core Network.

Index Terms—5G network, cloud-native, auto-scaling, Machine
Learning, Kubernetes, OpenAirInterface

I. INTRODUCTION

5G networks provide a radical shift from the traditional
cellular networking paradigm, by introducing several concepts
that add up to the flexibility, management and re-configuration
of the network. Through the disaggregation of the cellular
infrastructure in multiple levels, part of the networking stack
can run at the network edge as a Virtual Network Function
(VNF), allowing for flexible instantiation/tear-down of base
stations in a single-click fashion [1]. The 5G Core Network
(5GCN) Service Based Architecture (SBA) allows the off-
the-shelf deployment of several 5G network components in
a Cloud-native manner [2], while such functionality is further
extending to the RAN with the disaggregation of the control
and user plane functions of the base stations, through efforts
such as the O-RAN alliance [3]. This disaggregation enables
the flexible managementof the RAN network on the fly, by
dynamically configuring the resource allocation per VNF.

Dynamic adaptation of the RAN resources can prove to
be very beneficial in-terms of overall network efficiency, and
can assist in the dynamic adaptation of the network, based
on the workload that it is expected to cope with. For example,

This work was supported by the National Science Foundation under Grant
CNS 2112562 and the Office of Naval Research under Grant N00014-19-1-
2566.

during night-time we expect lower use of the cellular networks
compared to rush-hours, and this is reflected to the amount of
computational resources needed for various processes in the
RAN or the Core Network. Examples of such resources can
include computational resources for LDPC en/decoding at the
base station or resources for the User Plane Function (UPF)
relaying traffic to the Data Network (DN). At the same time,
the load in the network can be inferred from different RAN-
level metrics, or by monitoring the entire micro-service that
implements the service and extracting metrics such as traffic
load that each Core Network component exchanges/relays to
the DN. Metrics such as the Packet Data Convergence Protocol
(PDCP) bytes or the MAC level SDUs for the Uplink (UL)
or Downlink (DL) can reveal the load under which the cell is
placed, and hence closed control loops at the base station level
can be employed for re-organizing the cell, towards coping
with the demand. Such re-organization can include adding
computational resources to the cell, re-configuring the wireless
network parameters, or re-allocating slices for the UEs.

Although such metrics provide insights for the current
network utilization, predicting the evolution of a metric in
the near future can provide substantial benefits for the self-
organization of the network. Machine Learning (ML) appli-
cation can help towards that goal through the estimation of
specific features that combined can offer the required metric
with high accuracy. In this work, we focus on a cloud-native
cellular network, with the core network and the RAN being
realized using micro-services using the OpenAirInterface [4]
platform. By exploiting the Kubernetes framework and the
advanced features it provides, we aim towards achieving the
following goals:

• To extract metrics revealing the true network utilization
for either the RAN or the Core Network.

• To apply ML for predicting future resource requirements,
based on the observed traffic patterns.

• To define a proactive scaling mechanism for the RAN
and the Core Network components, using the vertical and
horizontal scaling that the framework provides.

The rest of the paper is organized as follows: in Section II
we provide some relevant literature. In Section III we provide
the system model and the related ML processes that we use.
In Section IV we evaluate our framework, and in Section V
we conclude our work and present our future directions.

II. RELATED WORK

Network virtualization has enabled several key features
that add up to the flexibility for managing the network and

978-1-7281-8104-2/21/$31.00 ©2021 IEEE

GL
O

BE
CO

M
 2

02
1

- 2
02

1
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
10

4-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
46

51
0.

20
21

.9
68

58
74

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:34:52 UTC from IEEE Xplore. Restrictions apply.

allocating the resources in a meaningful manner. Machine
Learning (ML) is a powerful tool that can assist in the alloca-
tion process, through effective predictions for the evolution of
monitored network statistics. Authors in [5] employ ML for the
allocation of resources in the cellular network, in a vehicular
environment. They compare three different models, namely
a Convolutional Neural Network (CNN), a Deep Neural Net-
work (DNN) and a Long-Short Term Memory (LSTM) model,
used to predict traffic and establish flows in an SDN controller
managing the network, and evaluate it in terms of training cost
and prediction accuracy. In [6], authors analyze the different
learning models (supervised, unsupervised and reinforcement
learning) that can be used for efficiently allocating slices
over cellular infrastructure. In [7], the authors employ an
unsupervised learning model for clustering nodes in a fog-
networking domain towards minimizing latency.

Empowered by the flexibility of cloud-native applications
and managing frameworks that enable automatic scaling of
the deployed services, authors in [8] develop an ML classifier
which learns from past VNF scaling decisions and spatial
network traffic load to proactively scale the network. The
authors compare their solution against other ML-based clas-
sifiers for training cost and accuracy, and present quantitative
results regarding the leasing cost savings of their solutions.
In [9], the authors extend their solution for service chains,
and formulate the problem as a negotiation game between the
network operator and the infrastructure tenants who participate
in the scaling decision. Auto-scaling applications for the
telecom cloud cellular network is proposed in [10]. Authors
use a Markov Decision Process for Reinforcement Learning,
and determine the policy in auto-scaling based on the traffic
workload. Through extensive experiments, the authors prove
that their policy-based solution outperforms target-based auto-
scaling decisions, while ensuring QoS in the network.

Although the previous works focus on scaling the deployed
services of a 5G network, none of them apply the process to
the actual services that provide network access. Authors in
[11] aim to fulfil this gap, by introducing a scaling algorithm
based on Control Theory for the Access and Mobility Function
(AMF) of the 5G Core Network (5G-CN). Their solution is
optimizing only the Control Plane (CP) part of the network.
They present an algorithm that efficiently scales-out the AMF
function of the network when traffic peaks are observed, and
traffic is subsequently balanced among the replicas, achieving
better efficiency and less blocked users under high load. In [12]
their solution is further extended with a ML approach using
a LSTM model for predicting peaks in traffic, and proactively
scale the AMF for absorbing future incoming traffic. Both
solutions are evaluated using the 4G equivalent of the AMF,
the Mobility Management Entity (MME).

Extending to the User Plane (UP) of the core network,
authors in [13] analyze the different ML techniques that are
applicable for scaling the User Plane Function (UPF) that
provide data access in the 5G-CN architecture. In [14], an
algorithm is proposed for auto-scaling the UPF equivalent in
the 4G network architecture, namely the Serving Gateway

(SGW) and Packet Data Network Gateway (PGW), towards
ensuring constant bit-rate to each of the allocated network
slices. Authors in [15] develop a ML approach enabling O-
RAN managed networks to decide in near real-time their
allocation based on network metrics from the base station.

In this work, we extend existing state-of-the-art by em-
ploying a LSTM model to predict traffic patterns observed in
the Core Network, towards determining scaling decisions for
both CP and UP functions. The scaling decisions for the Core
Network are horizontal, enabling the replication of the service
to multiple replicas that serve concurrently the attached UEs.
Moving beyond existing state-of-the-art, and based on the fact
that the base station is running in a virtualized environment,
we propose scaling the base station as well towards ensuring
seamless network service to bulks of UEs using the network.
The scaling of the base station is vertical, meaning that more
computational resources are added to the VNF, as under load
several bottlenecks in scheduling/decoding exist [16].

In the following section we present our system architecture,
and provide details for the ML framework that we use to
predict the traffic patterns in the network. The network traffic
is replicated from the open source dataset of Telecom Italia
[17], which provides traffic data from the 4G networks in the
city of Milan and the Province of Trentino.

III. SYSTEM MODEL

In this section we present the system architecture and the
ML approach used for predicting the metrics that define the
scaling of the network.

A. System Setup

Towards creating a cloud-native RAN, we employ the Ope-
nAirInterface (OAI) platform [4]. OAI is an all-software based
implementation of the 4G and 5G RAN and Core Network,
implementing the network over commodity equipment using
a Software Defined Radio (SDR) front-end. Since the 5G-CN
implementation is at the time of writing not mature yet, we
focus on the LTE implementation of the network. The CN is
realized using the Control and User Plane Separation (CUPS)
architecture, allowing each function to run as a separate micro-
service. The OAI implementation of the CUPS architecture is
providing the Home Subscriber Service (HSS), the Mobility
Management Entity (MME), a Service/Packet GW for CP
(SPGW-C), a Service/Packet GW for UP (SPGW-U), and a
Cassandra database for holding the subscriptions. We focus
on scaling the RAN eNB function, the MME for CP traffic,
and the SPGW-U for UP operations. The cases of scaling are
mapped to the 5G implementation without changing any of
the monitored metrics as follows: instead of the eNB we scale
the gNB operation, instead of the MME we scale the AMF,
and instead of the SPGW-U we scale the UPF.

All the different components have been containerized as
docker micro-services, including the RAN function (eNB)
which requires only access to an SDR-based front-end (either
network or USB based). In order to enable management,
monitoring and automatic-scaling of the functions, we use

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:34:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: System architecture for the under-study cloud native network: telemetry for the collected metrics is provided by Prometheus, and data are managed
with our RNN; decisions on the number of replicas/resource allocation (in green color) are applied through the Kubernetes HPA and VPA.

the Kubernetes (K8s) framework [18] to deploy the network
services over our infrastructure. K8s allows the effortless
deployment of cloud-native services, allowing their automatic
scaling using user-defined triggering metric targets. Scaling
employed in this work is horizontal, realized by the Horizontal
Pod Autoscaler (HPA) which spawns replicas of the service
and redirects traffic to the pool of replicas, or vertical, realized
by the Vertical Pod Autoscaler (VPA) which assigns more/less
resources to a container triggered by a target metric.

Towards extending the monitored metrics that drive our
decisions for scaling, we deploy the Prometheus Operator
[19] within our K8s cluster. Prometheus is a monitoring stack
that integrates with the APIs of K8s allowing global services
such as the HPA/VPA to take advantage of extended metrics
from the deployed services. In order to get more precise
measurements about the scheduling decisions and the load of
the cell on the radio side, we also deploy and integrate in
the monitoring solution the FlexRAN [20] platform. FlexRAN
queries the eNB and can retrieve real-time statistics from the
OSI layer-2 protocols of the eNB. In our setup, it was deployed
as a separate container, and integrated to the Prometheus
monitored metrics by exposing data through a REST interface,
queried by a K8s service monitor. Figure 1 shows the compo-
nents for our system-level cloud-native RAN architecture.

B. Machine Learning

For determining the predictability of different variables
on the demand for VNFs, we analyze the collected met-
rics and employ a data driven approach for making predic-
tions. We identify certain important VNFs in the cloud-native
RAN paradigm that could benefit from the proactive scaling
out/in/up/down processes. For instance, pressure in decoding
received network traffic in eNodeBs could be relieved with ver-
tical scaling up of the containers, while energy could be saved
by keeping resources unexploited during a lack of workload.
Similarly, the number of VNFs could be horizontally scaled

out and in to match the demands and save resources and energy
in the process. For the MME case, a bottleneck in the attach
process due to resource-congestion [11] can cause drops in
service for other users attaching to the cell in parallel. Such
behavior could be mitigated by scaling the service accordingly
by looking at specific traffic patterns. Towards identifying key
metrics that reflect the load of the network inside specific
functions of the cloud native RAN, we generated traffic based
on an existing dataset [17] and monitored the affected metrics.
For our case, we focused on the following variables which are
representative of the pressure conditions for each VNF:

1) For the eNB, the UP bytes sent over the PDCP protocol.
2) For the SPGW-U, the UP traffic that is sent over the S1-U

interface.
3) For the MME, the CP traffic that is exchanged over the

S1-MME interface.

These metrics are constantly monitored and their values are
predicted through our ML model towards identifying possible
pressure in one of the components. The solution is receiving a
time-series of the metrics, and estimating the number of clients
that are sending traffic/requesting service from the network.
For capturing the relationship between various network metrics
and the demand for the VNFs, Deep Learning grants us the
potential to capture the underlying relationships. This allows
us to scale the resources to match the number of anticipated
load, and in the process save energy/resources. It is evident that
the network traffic from the past would suggest the number of
expected connections at present, with recent statistics being a
stronger predictor. The rate of fluctuations in traffic volume
could also be a source of prediction. Hence, to consider the
temporal nature of UP as well as CP traffic, we employed
a Recurrent Neural Network (RNN) [21]. We implemented a
Long Short-Term Memory (LSTM) [22] RNN, since they im-
prove on the capability of RNNs to consider temporal memory
with an added ability to overcome issues such as the vanishing

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:34:52 UTC from IEEE Xplore. Restrictions apply.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
b

e
r

o
f

C
o

n
n

e
c
ti
o

n
s

Time (s)

UP Data Predictions (SPGW-U)

Real Values Predicted Values

(a) Core Network UP predictions (SPGW-U)

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
b

e
r

o
f

C
o

n
n

e
c
ti
o

n
s

Time (s)

UP Data Predictions (eNB)

Real Values Predicted Values

(b) RAN UP Predictions (eNB)

Fig. 2: ML model evaluation at different parts of the network (Core/RAN) and types of traffic (CP/UP)

gradient problem. Prediction for different network functions
followed a similar NN model, and here we describe the model
applied in the SPGW-U case in further detail. In this case, the
input is a vector (time-sequence) of relevant network traffic
statistics (rate of UP traffic flow) through the SPGW-U VNFs,
collected over a certain period of time at certain intervals, i.e.
from t− k to t− l where k > l > 0. The output of this NN is
the prediction of number of connections accessing the SPGW-
Us at certain time t. Hence, the prediction is for future traffic
demands based on past traffic data. During the learning phase,
the output from this NN is compared against the real collected
output for supervised learning. The connection statistics and
the network traffic generated by the system at different times
are used as training and testing data (with 80% of the data
allocated for training and 20% for testing), with the test case
showing how well the chosen network statistics can predict
the demand for the corresponding network functions.

An LSTM structure consisting of 8 hidden layers, 2 stacked
layers, followed by a leaky ReLu before the output was found
to be adequate for learning, with test data showing that over-
fitting was not a significant issue and accuracy was high.
L2 regularization was employed to prevent over fitting, with
Adam [23] as the gradient decent method and Mean Squared
Error (MSE) as the loss function. To determine the ability of
the neural network to make accurate predictions, Mean Abso-
lute Error (MAE) between predicted and the actual number
of connections was used. With other parameters remaining
the same, the number of hidden layers and stacked layers
were reduced to 4 and 2 respectively for predicting the CP
load at the MME side, while no such changes were made for
predicting the eNB demands. These design conclusions were
verified through experimentation over different configurations.

As our results show in Section IV, the MME is quickly
saturated when receiving high loads of traffic, as it processes
the network attach requests in a serial manner. Therefore,
scaling the MME can help to parallelize the attach process
for more clients, and relieve the load from a single MME.

IV. EVALUATION

For the evaluation of the developed functionality, we use an
indoor testbed located in the Yale University premises. We use

a single node setup, equipped with a USRP B210 SDR, where
the core K8s framework is configured and the cloud-native
RAN is instantiated. A second node is used with a LTE dongle
as UE, that can attach to the deployed RAN. On the node that
is attaching to the network, we use an open source dataset
provided by Telecom Italia [17], which contains patterns of
users requesting service from the network, spanning an entire
week. The dataset was replicated as new connections for data
service that are requested from the UE. Each new connection
is classified in a random manner as low/medium/high network
traffic; this is mapped to the traffic that is injected to the DL
channel towards the UE. The three classes equal to 70/25/5
% of the traffic connections for low/medium/high traffic load
categories respectively. Each of the UE connections triggers
a DL UDP traffic stream from a docker located in the data
network after the SPGW-U. The sum of the traffic going over
the network is configured to reach the maximum capacity of
the eNB cell at any time. This equals to approx. 35 Mbps, as
the eNB is configured to operate in FDD band 7, with 10MHz
channel bandwidth in a single antenna configuration. For all
the experiment cases, we use the ML model to predict the
number of connections that are active over the cloud-native
network, based on the metrics described in Section III.

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

B
y
te

s

Time (s)

Input Data for Predictions

1m Rate of PDCP Data

Fig. 3: Data used for eNB predictions; red and green dotted lines represent
two cases where vertical scaling shall take place for accommodating the extra
load in the network

The first objective was to record relevant UP traffic statis-
tics at the core network (i.e. through Serving Gateway/PDN

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:34:52 UTC from IEEE Xplore. Restrictions apply.

Gateway (SPGW)) and figuring how they can be used to
determine the number of active connections that the core
is supposed to serve. The LSTM was used to predict how
the changes in UP traffic can track the demand for the
services. Based on the aforementioned dataset, randomized
connections were generated, and for these connections, the
system implementation allowed us to obtain the network traffic
information. In an offline setting, the neural networks were
trained in a similar manner. Test data were generated for
the evaluation in the same system and manner. Initially, we
consider the capability of our method to analyze the traffic
statistics in the SPGW-U to accurately predict the number of
connections that are expected to be served. Figure 2a shows
how our system predicts the number of connections. As shown,
the ML model is able to closely track the actual number
of connections, which allows the system to accurately make
scaling decisions. To quantify and compare the accuracy of this
method, it was compared against a moving average approach,
but the accuracy of our method was found to be significantly
better. To measure the accuracy, MAE was calculated for the
test data. We took the error calculated by the best training
method as the baseline/tolerance, and measured the extra error
generated on test case by different methods. For our approach
this value was 0.08. In the implementation of the moving
average method, the value was 1.8 with the same test data. This
implies that in about an hour of test data, about 1238 instances
would be predicted more efficiently. Since the inference time is
about 2 msecs on a setup with CUDA and a Quadro M2200
graphics card, real time inference/decision making is not a
concern for our model.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

N
u

m
b

e
r

o
f

C
o

n
n

e
c
ti
o

n
s

Time (s)

CP Data Predictions (MME)

Real Values
Predicted Values

MME Rx bytes rate

Fig. 4: Core Network CP predictions (MME): With a red dotted line we denote
the point triggering the autoscaling process

Using an identical set of parameters, we measure the
expected number of connections on the eNB side using the
information reported on the PDCP data exchange. As seen in
Figure 2b, the predictions are very close to the actual number
of connections. Based on the measured connections, and thus
the stress that the eNB is getting, the eNB can re-provision
itself to either use more resources (e.g. CPU/MEM) or change
its settings completely towards addressing the demand (e.g.
enable a MIMO mode/enable carrier aggregation etc.). Similar
to the case of SPGW-U, the values stayed at 0.09 for our
approach and 2.3 for the moving average approach. In cases

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u

m
b

e
r

o
f

C
o

n
n

e
c
ti
o

n
s

Time (s)

Energy Savings under scaling Decisions (SPGW-U)

Real Values
Energy Allocation w/ scaling

Energy Allocation w/o scaling

Fig. 5: Energy efficiency evaluation of the auto-scaling mechanism for the
SPGW-U

that the demand is low, the network can reduce resources for
cost savings. Towards determining the exact demand, we com-
bine the estimated number of connections, together with the
actual PDCP data that represent the UP eNB pressure, towards
determining in a lower level the UEs that request most traffic
from the network. Based on this information, we determine the
exact scaling of the network. Figure 3 shows the actual data
that was used for determining the number of connections active
over the eNB. Based on predefined thresholds, we trigger the
vertical scaling of the eNB for accommodating the load. This
approach can extend for other uses, including the allocation
of slices within the network, based on the demand that we
infer from the monitored metrics. Figure 3 illustrates two
different points where the scaling process can happen; with
a red line, we denote a scaling decision for allocating more
channel bandwidth (i.e. re-configuring the cell bandwidth from
10MHz to 20MHz), and with a green line a change in the
antenna configuration, from SISO to 2x2 MIMO.

Regarding the CP experiments, since the number of UEs
present in the dataset can reach up to 12K per each cell for
the entire week period, we use a simulated RAN and UE
provided by OAI, as OAISIM. OAISIM is integrated with the
rest of the architecture, and substitutes the eNB and UEs in
Figure 1 with a single container. The dataset is replicating
traffic as new UEs entering the system, and exchanging S1AP
messages with the MME. This approach is the closest possible
to replicating CP traffic over a real network, as prior works
in literature consider part of the traffic as CP, which is not
realistic. Message exchanges that stress the MME happen
only during the network attach process, and are only a small
fraction of the traffic that is exchanged during a connection.

As shown in Figure 4, the model was able to predict the
demand based on the CP data. Nevertheless, since the MME
is working in a different manner for the CP traffic than the
SPGW-U for UP, it can be observed that after a certain point
the MME is saturated; this causes subsequent requests to be
delayed for processing, causing delays in the attach process for
the new UEs. With a gray line we denote the traffic pattern
that was used for predicting the number of connections. It
represents a scaled down version of the rate of received bytes,
as monitored by Prometheus, averaged over the last minute.

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:34:52 UTC from IEEE Xplore. Restrictions apply.

As we see, beyond the point of approx. 42 secs, the rate
is constantly high, meaning that the UEs more aggressively
send attach requests. Nonetheless, the number of actual (and
therefore predicted) UEs is not changing, denoting that there
is a bottleneck in the attach process. In order to alleviate
this issue, our framework timely identifies it and instructs the
cluster to scale out the deployment with more MME replicas.

An important implication of making a real-time predic-
tion of the demand for different VNFs is to prevent over-
provisioning of the resources during deployment, while also
ensuring that the services are adequately served and delays
are avoided when a service needs to be scaled. Using the
aforementioned predictions, we can optimize the number of
hardware units dedicated to specific VNFs, allowing the
system to free up the resources for energy savings or other
applications that do not have stringent delay requirements.
We therefore present some indicative results for the case of
the SPGW-U VNF in our system. The prediction of demand
is used to update the allocation for a certain period of time;
in Figure 5, the allocation based on prediction closely tracks
the real demand as opposed to an arbitrary allocation such as
near the expected maximum (shown with a red-colored line).
The illustrated results show that the allocation of resources
is reduced by approx. 50.3% for the specific interval. We
have further examined the resource allocation efficiency for
different settings, subject to factors such as ”how much to err
on the side of over provisioning to avoid congestion?” and
”how often to update the allocation of resources?”, but most
of those decisions in our experiments allowed an efficiency
within the range of 37% and 58% savings.

V. CONCLUSION

In this work, we presented a real cloud-native RAN deploy-
ment using off-the-shelf tools for monitoring its operation.
The cloud-native deployment extended to the actual RAN,
by enabling the execution of the cell providing access as a
microservice. Leveraging on the advanced functionalities for
scaling the deployed VNFs, we introduced two types of scaling
for the network: horizontal for the core network components,
and vertical for the RAN. Exploiting telemetry tools for
different parts of the deployed network, we developed and
evaluated a ML model for predicting the impact of different
metrics in the network, based on the load under which it is
placed. Our results showed clear benefits for the developed
framework as the ML solution is able to predict the number
of active connections with high accuracy over the network,
which reflects to pro-active scaling of different components for
the User Plane or Control Plane. For Control Plane, efficient
scaling results in more users being able to attach to the
network concurrently, thus alleviating any blockages that a
UE might experience when swarms of users request network
service. For the User Plane, we illustrated that efficient scaling
of the Core Network components can lead to high energy
gains, while for the RAN components, vertical scaling can
assist in accommodating the incoming demand. In the future,
we foresee to extend the ML scheme towards identifying

the applications that run over the network, and subsequently
allocating the respective slices in an end-to-end manner.

REFERENCES

[1] C.-Y. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Kumar,
“FlexCRAN: A flexible functional split framework over ethernet fron-
thaul in Cloud-RAN,” in 2017 IEEE ICC. IEEE, 2017, pp. 1–7.

[2] A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5G evolution: A
view on 5G cellular technology beyond 3GPP release 15,” IEEE Access,
vol. 7, pp. 127 639–127 651, 2019.

[3] L. Gavrilovska, V. Rakovic, and D. Denkovski, “From Cloud RAN to
Open RAN,” Wireless Personal Communications, pp. 1–17, 2020.

[4] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,”
ACM SIGCOMM Computer Communication Review, vol. 44, 2014.

[5] S. Khan Tayyaba, H. A. Khattak, A. Almogren, M. A. Shah, I. Ud
Din, I. Alkhalifa, and M. Guizani, “5G Vehicular Network Resource
Management for Improving Radio Access Through Machine Learning,”
IEEE Access, vol. 8, pp. 6792–6800, 2020.

[6] V. P. Kafle, Y. Fukushima, P. Martinez-Julia, and T. Miyazawa, “Con-
sideration on automation of 5G network slicing with machine learning,”
in 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K).
IEEE, 2018, pp. 1–8.

[7] E. Balevi and R. D. Gitlin, “Unsupervised machine learning in 5G
networks for low latency communications,” in 2017 IEEE 36th IPCCC,
2017, pp. 1–2.

[8] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-Scaling VNFs Using Machine Learning to Improve QoS and
Reduce Cost,” in 2018 IEEE ICC, 2018, pp. 1–6.

[9] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-scaling network service chains using machine learning and nego-
tiation game,” IEEE Transactions on Network and Service Management,
vol. 17, no. 3, pp. 1322–1336, 2020.

[10] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient auto-scaling
approach in the telco cloud using self-learning algorithm,” in 2015 IEEE
GLOBECOM. IEEE, 2015, pp. 1–6.

[11] I. Alawe, Y. Hadjadj-Aoul, A. Ksentini, P. Bertin, and D. Darche, “On
the scalability of 5G core network: The AMF case,” in 2018 15th IEEE
CCNC, 2018, pp. 1–6.

[12] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin, “Improving Traffic
Forecasting for 5G Core Network Scalability: A Machine Learning
Approach,” IEEE Network, vol. 32, no. 6, pp. 42–49, 2018.

[13] Y. Fu, S. Wang, C.-X. Wang, X. Hong, and S. McLaughlin, “Artificial
intelligence to manage network traffic of 5G wireless networks,” IEEE
Network, vol. 32, no. 6, pp. 58–64, 2018.

[14] T. V. K. Buyakar, A. K. Rangisetti, A. A. Franklin, and B. R. Tamma,
“Auto scaling of data plane VNFs in 5G networks,” in 2017 13th CNSM,
2017, pp. 1–4.

[15] H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, “Hosting AI/ML Work-
flows on O-RAN RIC Platform,” in 2020 IEEE Globecom Workshops.
IEEE, 2020, pp. 1–6.

[16] N. Budhdev, M. C. Chan, and T. Mitra, “Poster: IsoRAN: Isolation and
Scaling for 5G RAN via User-Level Data Plane Virtualization,” in 2020
IFIP Networking Conference. IEEE, 2020, pp. 634–636.

[17] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of Milan and the Province of Trentino,”
Scientific data, vol. 2, no. 1, pp. 1–15, 2015.

[18] D. Bernstein, “Containers and cloud: From LXC to docker to Kuber-
netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[19] J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.
[20] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-

vasilis, “FlexRAN: A flexible and programmable platform for software-
defined radio access networks,” in Proceedings of the 12th CoNEXT,
2016, pp. 427–441.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Tech. rep. ICS 8504. San Diego,
California: Institute for Cognitive Science, University of California,
Sept, 1985.

[22] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
International Conference on Learning Representations, 12 2014.

Authorized licensed use limited to: Yale University. Downloaded on December 15,2023 at 14:34:52 UTC from IEEE Xplore. Restrictions apply.

